Для функции (X∨Y)∧(¬X∨¬Z):


Промежуточные таблицы истинности:
X∨Y:
XYX∨Y
000
011
101
111

¬X:
X¬X
01
10

¬Z:
Z¬Z
01
10

(¬X)∨(¬Z):
XZ¬X¬Z(¬X)∨(¬Z)
00111
01101
10011
11000

(X∨Y)∧((¬X)∨(¬Z)):
XYZX∨Y¬X¬Z(¬X)∨(¬Z)(X∨Y)∧((¬X)∨(¬Z))
00001110
00101010
01011111
01111011
10010111
10110000
11010111
11110000

Общая таблица истинности:

XYZX∨Y¬X¬Z(¬X)∨(¬Z)(X∨Y)∧(¬X∨¬Z)
00001110
00101010
01011111
01111011
10010111
10110000
11010111
11110000

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XYZF
0000
0010
0101
0111
1001
1010
1101
1110
Fсднф = ¬X∧Y∧¬Z ∨ ¬X∧Y∧Z ∨ X∧¬Y∧¬Z ∨ X∧Y∧¬Z
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XYZF
0000
0010
0101
0111
1001
1010
1101
1110
Fскнф = (X∨Y∨Z) ∧ (X∨Y∨¬Z) ∧ (¬X∨Y∨¬Z) ∧ (¬X∨¬Y∨¬Z)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
XYZFж
0000
0010
0101
0111
1001
1010
1101
1110

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧X ⊕ C010∧Y ⊕ C001∧Z ⊕ C110∧X∧Y ⊕ C101∧X∧Z ⊕ C011∧Y∧Z ⊕ C111∧X∧Y∧Z

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 0 ⊕ 1 = 1
Fж(010) = С000 ⊕ С010 = 1 => С010 = 0 ⊕ 1 = 1
Fж(001) = С000 ⊕ С001 = 0 => С001 = 0 ⊕ 0 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 0 => С111 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = X ⊕ Y ⊕ X∧Y ⊕ X∧Z
Логическая схема, соответствующая полиному Жегалкина:

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2017, Список Литературы