Для функции (X1∧X2∧X3)∨¬X2:


Промежуточные таблицы истинности:
X1∧X2:
X1X2X1∧X2
000
010
100
111

(X1∧X2)∧X3:
X1X2X3X1∧X2(X1∧X2)∧X3
00000
00100
01000
01100
10000
10100
11010
11111

¬X2:
X2¬X2
01
10

((X1∧X2)∧X3)∨(¬X2):
X1X2X3X1∧X2(X1∧X2)∧X3¬X2((X1∧X2)∧X3)∨(¬X2)
0000011
0010011
0100000
0110000
1000011
1010011
1101000
1111101

Общая таблица истинности:

X1X2X3X1∧X2(X1∧X2)∧X3¬X2(X1∧X2∧X3)∨¬X2
0000011
0010011
0100000
0110000
1000011
1010011
1101000
1111101

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
X1X2X3F
0001
0011
0100
0110
1001
1011
1100
1111
Fсднф = ¬X1∧¬X2∧¬X3 ∨ ¬X1∧¬X2∧X3 ∨ X1∧¬X2∧¬X3 ∨ X1∧¬X2∧X3 ∨ X1∧X2∧X3
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
X1X2X3F
0001
0011
0100
0110
1001
1011
1100
1111
Fскнф = (X1∨¬X2∨X3) ∧ (X1∨¬X2∨¬X3) ∧ (¬X1∨¬X2∨X3)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
X1X2X3Fж
0001
0011
0100
0110
1001
1011
1100
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧X1 ⊕ C010∧X2 ⊕ C001∧X3 ⊕ C110∧X1∧X2 ⊕ C101∧X1∧X3 ⊕ C011∧X2∧X3 ⊕ C111∧X1∧X2∧X3

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 1 ⊕ 1 = 0
Fж(010) = С000 ⊕ С010 = 0 => С010 = 1 ⊕ 0 = 1
Fж(001) = С000 ⊕ С001 = 1 => С001 = 1 ⊕ 1 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 1 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ X2 ⊕ X1∧X2∧X3
Логическая схема, соответствующая полиному Жегалкина:

Наши друзья

Качественное решение задач курсовых работ, РГЗ по техническим предметам.
botaniks.ru

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2016, Список Литературы