Для функции A∧(A∨B)∧(C∨¬B):


Промежуточные таблицы истинности:
A∨B:
ABA∨B
000
011
101
111

¬B:
B¬B
01
10

C∨(¬B):
CB¬BC∨(¬B)
0011
0100
1011
1101

A∧(A∨B):
ABA∨BA∧(A∨B)
0000
0110
1011
1111

(A∧(A∨B))∧(C∨(¬B)):
ABCA∨BA∧(A∨B)¬BC∨(¬B)(A∧(A∨B))∧(C∨(¬B))
00000110
00100110
01010000
01110010
10011111
10111111
11011000
11111011

Общая таблица истинности:

ABCA∨B¬BC∨(¬B)A∧(A∨B)A∧(A∨B)∧(C∨¬B)
00001100
00101100
01010000
01110100
10011111
10111111
11010010
11110111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCF
0000
0010
0100
0110
1001
1011
1100
1111
Fсднф = A∧¬B∧¬C ∨ A∧¬B∧C ∨ A∧B∧C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCF
0000
0010
0100
0110
1001
1011
1100
1111
Fскнф = (A∨B∨C) ∧ (A∨B∨¬C) ∧ (A∨¬B∨C) ∧ (A∨¬B∨¬C) ∧ (¬A∨¬B∨C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCFж
0000
0010
0100
0110
1001
1011
1100
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧C

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 0 ⊕ 1 = 1
Fж(010) = С000 ⊕ С010 = 0 => С010 = 0 ⊕ 0 = 0
Fж(001) = С000 ⊕ С001 = 0 => С001 = 0 ⊕ 0 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = A ⊕ A∧B ⊕ A∧B∧C
Логическая схема, соответствующая полиному Жегалкина:

Наши друзья

Качественное решение задач курсовых работ, РГЗ по техническим предметам.
botaniks.ru

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2020, Список Литературы