Для функции ¬A∨¬B∨(C∨A∧B)∧(B∧D):


Промежуточные таблицы истинности:
A∧B:
ABA∧B
000
010
100
111

C∨(A∧B):
CABA∧BC∨(A∧B)
00000
00100
01000
01111
10001
10101
11001
11111

B∧D:
BDB∧D
000
010
100
111

¬A:
A¬A
01
10

¬B:
B¬B
01
10

(C∨(A∧B))∧(B∧D):
CABDA∧BC∨(A∧B)B∧D(C∨(A∧B))∧(B∧D)
00000000
00010000
00100000
00110010
01000000
01010000
01101100
01111111
10000100
10010100
10100100
10110111
11000100
11010100
11101100
11111111

(¬A)∨(¬B):
AB¬A¬B(¬A)∨(¬B)
00111
01101
10011
11000

((¬A)∨(¬B))∨((C∨(A∧B))∧(B∧D)):
ABCD¬A¬B(¬A)∨(¬B)A∧BC∨(A∧B)B∧D(C∨(A∧B))∧(B∧D)((¬A)∨(¬B))∨((C∨(A∧B))∧(B∧D))
000011100001
000111100001
001011101001
001111101001
010010100001
010110100101
011010101001
011110101111
100001100001
100101100001
101001101001
101101101001
110000011000
110100011111
111000011000
111100011111

Общая таблица истинности:

ABCDA∧BC∨(A∧B)B∧D¬A¬B(C∨(A∧B))∧(B∧D)(¬A)∨(¬B)¬A∨¬B∨(C∨A∧B)∧(B∧D)
000000011011
000100011011
001001011011
001101011011
010000010011
010100110011
011001010011
011101110111
100000001011
100100001011
101001001011
101101001011
110011000000
110111100101
111011000000
111111100101

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCDF
00001
00011
00101
00111
01001
01011
01101
01111
10001
10011
10101
10111
11000
11011
11100
11111
Fсднф = ¬A∧¬B∧¬C∧¬D ∨ ¬A∧¬B∧¬C∧D ∨ ¬A∧¬B∧C∧¬D ∨ ¬A∧¬B∧C∧D ∨ ¬A∧B∧¬C∧¬D ∨ ¬A∧B∧¬C∧D ∨ ¬A∧B∧C∧¬D ∨ ¬A∧B∧C∧D ∨ A∧¬B∧¬C∧¬D ∨ A∧¬B∧¬C∧D ∨ A∧¬B∧C∧¬D ∨ A∧¬B∧C∧D ∨ A∧B∧¬C∧D ∨ A∧B∧C∧D
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCDF
00001
00011
00101
00111
01001
01011
01101
01111
10001
10011
10101
10111
11000
11011
11100
11111
Fскнф = (¬A∨¬B∨C∨D) ∧ (¬A∨¬B∨¬C∨D)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCDFж
00001
00011
00101
00111
01001
01011
01101
01111
10001
10011
10101
10111
11000
11011
11100
11111

Построим полином Жегалкина:
Fж = C0000 ⊕ C1000∧A ⊕ C0100∧B ⊕ C0010∧C ⊕ C0001∧D ⊕ C1100∧A∧B ⊕ C1010∧A∧C ⊕ C1001∧A∧D ⊕ C0110∧B∧C ⊕ C0101∧B∧D ⊕ C0011∧C∧D ⊕ C1110∧A∧B∧C ⊕ C1101∧A∧B∧D ⊕ C1011∧A∧C∧D ⊕ C0111∧B∧C∧D ⊕ C1111∧A∧B∧C∧D

Так как Fж(0000) = 1, то С0000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(1000) = С0000 ⊕ С1000 = 1 => С1000 = 1 ⊕ 1 = 0
Fж(0100) = С0000 ⊕ С0100 = 1 => С0100 = 1 ⊕ 1 = 0
Fж(0010) = С0000 ⊕ С0010 = 1 => С0010 = 1 ⊕ 1 = 0
Fж(0001) = С0000 ⊕ С0001 = 1 => С0001 = 1 ⊕ 1 = 0
Fж(1100) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С1100 = 0 => С1100 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(1010) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С1010 = 1 => С1010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(1001) = С0000 ⊕ С1000 ⊕ С0001 ⊕ С1001 = 1 => С1001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(0110) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0110 = 1 => С0110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(0101) = С0000 ⊕ С0100 ⊕ С0001 ⊕ С0101 = 1 => С0101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(0011) = С0000 ⊕ С0010 ⊕ С0001 ⊕ С0011 = 1 => С0011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(1110) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С1100 ⊕ С1010 ⊕ С0110 ⊕ С1110 = 0 => С1110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1101) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0001 ⊕ С1100 ⊕ С1001 ⊕ С0101 ⊕ С1101 = 1 => С1101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(1011) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С0001 ⊕ С1010 ⊕ С1001 ⊕ С0011 ⊕ С1011 = 1 => С1011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(0111) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С0111 = 1 => С0111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(1111) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С1100 ⊕ С1010 ⊕ С1001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С1110 ⊕ С1101 ⊕ С1011 ⊕ С0111 ⊕ С1111 = 1 => С1111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ A∧B ⊕ A∧B∧D
Логическая схема, соответствующая полиному Жегалкина:

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2018, Список Литературы