Для функции ¬(A)∧B∨A∧(¬B):


Промежуточные таблицы истинности:
¬B:
B¬B
01
10

¬A:
A¬A
01
10

(¬A)∧B:
AB¬A(¬A)∧B
0010
0111
1000
1100

A∧(¬B):
AB¬BA∧(¬B)
0010
0100
1011
1100

((¬A)∧B)∨(A∧(¬B)):
AB¬A(¬A)∧B¬BA∧(¬B)((¬A)∧B)∨(A∧(¬B))
0010100
0111001
1000111
1100000

Общая таблица истинности:

AB¬B¬A(¬A)∧BA∧(¬B)¬(A)∧B∨A∧(¬B)
0011000
0101101
1010011
1100000

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABF
000
011
101
110
Fсднф = ¬A∧B ∨ A∧¬B
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABF
000
011
101
110
Fскнф = (A∨B) ∧ (¬A∨¬B)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABFж
000
011
101
110

Построим полином Жегалкина:
Fж = C00 ⊕ C10∧A ⊕ C01∧B ⊕ C11∧A∧B

Так как Fж(00) = 0, то С00 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10) = С00 ⊕ С10 = 1 => С10 = 0 ⊕ 1 = 1
Fж(01) = С00 ⊕ С01 = 1 => С01 = 0 ⊕ 1 = 1
Fж(11) = С00 ⊕ С10 ⊕ С01 ⊕ С11 = 0 => С11 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = A ⊕ B
Логическая схема, соответствующая полиному Жегалкина:

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2018, Список Литературы