Для функции (¬X∧Y∧¬Z)∨(X∧¬Y∧Z):


Промежуточные таблицы истинности:
¬X:
X¬X
01
10

¬Z:
Z¬Z
01
10

(¬X)∧Y:
XY¬X(¬X)∧Y
0010
0111
1000
1100

((¬X)∧Y)∧(¬Z):
XYZ¬X(¬X)∧Y¬Z((¬X)∧Y)∧(¬Z)
0001010
0011000
0101111
0111100
1000010
1010000
1100010
1110000

¬Y:
Y¬Y
01
10

X∧(¬Y):
XY¬YX∧(¬Y)
0010
0100
1011
1100

(X∧(¬Y))∧Z:
XYZ¬YX∧(¬Y)(X∧(¬Y))∧Z
000100
001100
010000
011000
100110
101111
110000
111000

(((¬X)∧Y)∧(¬Z))∨((X∧(¬Y))∧Z):
XYZ¬X(¬X)∧Y¬Z((¬X)∧Y)∧(¬Z)¬YX∧(¬Y)(X∧(¬Y))∧Z(((¬X)∧Y)∧(¬Z))∨((X∧(¬Y))∧Z)
00010101000
00110001000
01011110001
01111000000
10000101100
10100001111
11000100000
11100000000

Общая таблица истинности:

XYZ¬X¬Z(¬X)∧Y((¬X)∧Y)∧(¬Z)¬YX∧(¬Y)(X∧(¬Y))∧Z(¬X∧Y∧¬Z)∨(X∧¬Y∧Z)
00011001000
00110001000
01011110001
01110100000
10001001100
10100001111
11001000000
11100000000

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XYZF
0000
0010
0101
0110
1000
1011
1100
1110
Fсднф = ¬X∧Y∧¬Z ∨ X∧¬Y∧Z
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XYZF
0000
0010
0101
0110
1000
1011
1100
1110
Fскнф = (X∨Y∨Z) ∧ (X∨Y∨¬Z) ∧ (X∨¬Y∨¬Z) ∧ (¬X∨Y∨Z) ∧ (¬X∨¬Y∨Z) ∧ (¬X∨¬Y∨¬Z)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
XYZFж
0000
0010
0101
0110
1000
1011
1100
1110

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧X ⊕ C010∧Y ⊕ C001∧Z ⊕ C110∧X∧Y ⊕ C101∧X∧Z ⊕ C011∧Y∧Z ⊕ C111∧X∧Y∧Z

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 0 ⊕ 0 = 0
Fж(010) = С000 ⊕ С010 = 1 => С010 = 0 ⊕ 1 = 1
Fж(001) = С000 ⊕ С001 = 0 => С001 = 0 ⊕ 0 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 0 => С111 = 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = Y ⊕ X∧Y ⊕ X∧Z ⊕ Y∧Z
Логическая схема, соответствующая полиному Жегалкина:

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2018, Список Литературы