Для функции (P→Q)→((P→R)→(P→(Q∧R))):


Промежуточные таблицы истинности:
P→Q:
PQP→Q
001
011
100
111

P→R:
PRP→R
001
011
100
111

Q∧R:
QRQ∧R
000
010
100
111

P→(Q∧R):
PQRQ∧RP→(Q∧R)
00001
00101
01001
01111
10000
10100
11000
11111

(P→R)→(P→(Q∧R)):
PRQP→RQ∧RP→(Q∧R)(P→R)→(P→(Q∧R))
0001011
0011011
0101011
0111111
1000001
1010001
1101000
1111111

(P→Q)→((P→R)→(P→(Q∧R))):
PQRP→QP→RQ∧RP→(Q∧R)(P→R)→(P→(Q∧R))(P→Q)→((P→R)→(P→(Q∧R)))
000110111
001110111
010110111
011111111
100000011
101010001
110100011
111111111

Общая таблица истинности:

PQRP→QP→RQ∧RP→(Q∧R)(P→R)→(P→(Q∧R))(P→Q)→((P→R)→(P→(Q∧R)))
000110111
001110111
010110111
011111111
100000011
101010001
110100011
111111111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
PQRF
0001
0011
0101
0111
1001
1011
1101
1111
Fсднф = ¬P∧¬Q∧¬R ∨ ¬P∧¬Q∧R ∨ ¬P∧Q∧¬R ∨ ¬P∧Q∧R ∨ P∧¬Q∧¬R ∨ P∧¬Q∧R ∨ P∧Q∧¬R ∨ P∧Q∧R
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
PQRF
0001
0011
0101
0111
1001
1011
1101
1111
В таблице истинности нет набора значений переменных при которых функция ложна!

Построение полинома Жегалкина:

По таблице истинности функции
PQRFж
0001
0011
0101
0111
1001
1011
1101
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧P ⊕ C010∧Q ⊕ C001∧R ⊕ C110∧P∧Q ⊕ C101∧P∧R ⊕ C011∧Q∧R ⊕ C111∧P∧Q∧R

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 1 ⊕ 1 = 0
Fж(010) = С000 ⊕ С010 = 1 => С010 = 1 ⊕ 1 = 0
Fж(001) = С000 ⊕ С001 = 1 => С001 = 1 ⊕ 1 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2018, Список Литературы