Для функции F≡¬A∨¬B→A∧B:


Промежуточные таблицы истинности:
¬A:
A¬A
01
10

¬B:
B¬B
01
10

A∧B:
ABA∧B
000
010
100
111

(¬A)∨(¬B):
AB¬A¬B(¬A)∨(¬B)
00111
01101
10011
11000

((¬A)∨(¬B))→(A∧B):
AB¬A¬B(¬A)∨(¬B)A∧B((¬A)∨(¬B))→(A∧B)
0011100
0110100
1001100
1100011

F≡(((¬A)∨(¬B))→(A∧B)):
FAB¬A¬B(¬A)∨(¬B)A∧B((¬A)∨(¬B))→(A∧B)F≡(((¬A)∨(¬B))→(A∧B))
000111001
001101001
010011001
011000110
100111000
101101000
110011000
111000111

Общая таблица истинности:

FAB¬A¬BA∧B(¬A)∨(¬B)((¬A)∨(¬B))→(A∧B)F≡¬A∨¬B→A∧B
000110101
001100101
010010101
011001010
100110100
101100100
110010100
111001011

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
FABF
0001
0011
0101
0110
1000
1010
1100
1111
Fсднф = ¬F∧¬A∧¬B ∨ ¬F∧¬A∧B ∨ ¬F∧A∧¬B ∨ F∧A∧B
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
FABF
0001
0011
0101
0110
1000
1010
1100
1111
Fскнф = (F∨¬A∨¬B) ∧ (¬F∨A∨B) ∧ (¬F∨A∨¬B) ∧ (¬F∨¬A∨B)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
FABFж
0001
0011
0101
0110
1000
1010
1100
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧F ⊕ C010∧A ⊕ C001∧B ⊕ C110∧F∧A ⊕ C101∧F∧B ⊕ C011∧A∧B ⊕ C111∧F∧A∧B

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 1 ⊕ 0 = 1
Fж(010) = С000 ⊕ С010 = 1 => С010 = 1 ⊕ 1 = 0
Fж(001) = С000 ⊕ С001 = 1 => С001 = 1 ⊕ 1 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ F ⊕ A∧B
Логическая схема, соответствующая полиному Жегалкина:

Наши друзья

Качественное решение задач курсовых работ, РГЗ по техническим предметам.
botaniks.ru

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2017, Список Литературы