Для функции A∧B∨¬B∧(A∨C):


Промежуточные таблицы истинности:
A∨C:
ACA∨C
000
011
101
111

¬B:
B¬B
01
10

A∧B:
ABA∧B
000
010
100
111

(¬B)∧(A∨C):
BAC¬BA∨C(¬B)∧(A∨C)
000100
001111
010111
011111
100000
101010
110010
111010

(A∧B)∨((¬B)∧(A∨C)):
ABCA∧B¬BA∨C(¬B)∧(A∨C)(A∧B)∨((¬B)∧(A∨C))
00001000
00101111
01000000
01100100
10001111
10101111
11010101
11110101

Общая таблица истинности:

ABCA∨C¬BA∧B(¬B)∧(A∨C)A∧B∨¬B∧(A∨C)
00001000
00111011
01000000
01110000
10011011
10111011
11010101
11110101

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCF
0000
0011
0100
0110
1001
1011
1101
1111
Fсднф = ¬A∧¬B∧C ∨ A∧¬B∧¬C ∨ A∧¬B∧C ∨ A∧B∧¬C ∨ A∧B∧C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCF
0000
0011
0100
0110
1001
1011
1101
1111
Fскнф = (A∨B∨C) ∧ (A∨¬B∨C) ∧ (A∨¬B∨¬C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCFж
0000
0011
0100
0110
1001
1011
1101
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧C

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 0 ⊕ 1 = 1
Fж(010) = С000 ⊕ С010 = 0 => С010 = 0 ⊕ 0 = 0
Fж(001) = С000 ⊕ С001 = 1 => С001 = 0 ⊕ 1 = 1
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = A ⊕ C ⊕ A∧C ⊕ B∧C ⊕ A∧B∧C
Логическая схема, соответствующая полиному Жегалкина:

Наши друзья

Качественное решение задач курсовых работ, РГЗ по техническим предметам.
botaniks.ru

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2020, Список Литературы