Для функции ¬A∧B≡¬B∧C:


Промежуточные таблицы истинности:
¬A:
A¬A
01
10

¬B:
B¬B
01
10

(¬A)∧B:
AB¬A(¬A)∧B
0010
0111
1000
1100

(¬B)∧C:
BC¬B(¬B)∧C
0010
0111
1000
1100

((¬A)∧B)≡((¬B)∧C):
ABC¬A(¬A)∧B¬B(¬B)∧C((¬A)∧B)≡((¬B)∧C)
00010101
00110110
01011000
01111000
10000101
10100110
11000001
11100001

Общая таблица истинности:

ABC¬A¬B(¬A)∧B(¬B)∧C¬A∧B≡¬B∧C
00011001
00111010
01010100
01110100
10001001
10101010
11000001
11100001

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCF
0001
0010
0100
0110
1001
1010
1101
1111
Fсднф = ¬A∧¬B∧¬C ∨ A∧¬B∧¬C ∨ A∧B∧¬C ∨ A∧B∧C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCF
0001
0010
0100
0110
1001
1010
1101
1111
Fскнф = (A∨B∨¬C) ∧ (A∨¬B∨C) ∧ (A∨¬B∨¬C) ∧ (¬A∨B∨¬C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCFж
0001
0010
0100
0110
1001
1010
1101
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧C

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 1 ⊕ 1 = 0
Fж(010) = С000 ⊕ С010 = 0 => С010 = 1 ⊕ 0 = 1
Fж(001) = С000 ⊕ С001 = 0 => С001 = 1 ⊕ 0 = 1
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 1 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ B ⊕ C ⊕ A∧B ⊕ B∧C
Логическая схема, соответствующая полиному Жегалкина:

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2018, Список Литературы