Для функции (X∧Y)⊕Z⊕(Z∧Y):


Промежуточные таблицы истинности:
X∧Y:
XYX∧Y
000
010
100
111

Z∧Y:
ZYZ∧Y
000
010
100
111

(X∧Y)⊕Z:
XYZX∧Y(X∧Y)⊕Z
00000
00101
01000
01101
10000
10101
11011
11110

((X∧Y)⊕Z)⊕(Z∧Y):
XYZX∧Y(X∧Y)⊕ZZ∧Y((X∧Y)⊕Z)⊕(Z∧Y)
0000000
0010101
0100000
0110110
1000000
1010101
1101101
1111011

Общая таблица истинности:

XYZX∧YZ∧Y(X∧Y)⊕Z(X∧Y)⊕Z⊕(Z∧Y)
0000000
0010011
0100000
0110110
1000000
1010011
1101011
1111101

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XYZF
0000
0011
0100
0110
1000
1011
1101
1111
Fсднф = ¬X∧¬Y∧Z ∨ X∧¬Y∧Z ∨ X∧Y∧¬Z ∨ X∧Y∧Z
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XYZF
0000
0011
0100
0110
1000
1011
1101
1111
Fскнф = (X∨Y∨Z) ∧ (X∨¬Y∨Z) ∧ (X∨¬Y∨¬Z) ∧ (¬X∨Y∨Z)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
XYZFж
0000
0011
0100
0110
1000
1011
1101
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧X ⊕ C010∧Y ⊕ C001∧Z ⊕ C110∧X∧Y ⊕ C101∧X∧Z ⊕ C011∧Y∧Z ⊕ C111∧X∧Y∧Z

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 0 ⊕ 0 = 0
Fж(010) = С000 ⊕ С010 = 0 => С010 = 0 ⊕ 0 = 0
Fж(001) = С000 ⊕ С001 = 1 => С001 = 0 ⊕ 1 = 1
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = Z ⊕ X∧Y ⊕ Y∧Z
Логическая схема, соответствующая полиному Жегалкина:

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2018, Список Литературы