Для функции ¬X∧¬Y∧¬Z:


Промежуточные таблицы истинности:
¬X:
X¬X
01
10

¬Y:
Y¬Y
01
10

¬Z:
Z¬Z
01
10

(¬X)∧(¬Y):
XY¬X¬Y(¬X)∧(¬Y)
00111
01100
10010
11000

((¬X)∧(¬Y))∧(¬Z):
XYZ¬X¬Y(¬X)∧(¬Y)¬Z((¬X)∧(¬Y))∧(¬Z)
00011111
00111100
01010010
01110000
10001010
10101000
11000010
11100000

Общая таблица истинности:

XYZ¬X¬Y¬Z(¬X)∧(¬Y)¬X∧¬Y∧¬Z
00011111
00111010
01010100
01110000
10001100
10101000
11000100
11100000

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XYZF
0001
0010
0100
0110
1000
1010
1100
1110
Fсднф = ¬X∧¬Y∧¬Z
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XYZF
0001
0010
0100
0110
1000
1010
1100
1110
Fскнф = (X∨Y∨¬Z) ∧ (X∨¬Y∨Z) ∧ (X∨¬Y∨¬Z) ∧ (¬X∨Y∨Z) ∧ (¬X∨Y∨¬Z) ∧ (¬X∨¬Y∨Z) ∧ (¬X∨¬Y∨¬Z)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
XYZFж
0001
0010
0100
0110
1000
1010
1100
1110

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧X ⊕ C010∧Y ⊕ C001∧Z ⊕ C110∧X∧Y ⊕ C101∧X∧Z ⊕ C011∧Y∧Z ⊕ C111∧X∧Y∧Z

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 1 ⊕ 0 = 1
Fж(010) = С000 ⊕ С010 = 0 => С010 = 1 ⊕ 0 = 1
Fж(001) = С000 ⊕ С001 = 0 => С001 = 1 ⊕ 0 = 1
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 0 => С111 = 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ X ⊕ Y ⊕ Z ⊕ X∧Y ⊕ X∧Z ⊕ Y∧Z ⊕ X∧Y∧Z
Логическая схема, соответствующая полиному Жегалкина:

Наши друзья

Качественное решение задач курсовых работ, РГЗ по техническим предметам.
botaniks.ru

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2017, Список Литературы