Для функции A∧B∨¬A∧B:


Промежуточные таблицы истинности:
¬A:
A¬A
01
10

A∧B:
ABA∧B
000
010
100
111

(¬A)∧B:
AB¬A(¬A)∧B
0010
0111
1000
1100

(A∧B)∨((¬A)∧B):
ABA∧B¬A(¬A)∧B(A∧B)∨((¬A)∧B)
000100
010111
100000
111001

Общая таблица истинности:

AB¬AA∧B(¬A)∧BA∧B∨¬A∧B
001000
011011
100000
110101

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABF
000
011
100
111
Fсднф = ¬A∧B ∨ A∧B
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABF
000
011
100
111
Fскнф = (A∨B) ∧ (¬A∨B)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABFж
000
011
100
111

Построим полином Жегалкина:
Fж = C00 ⊕ C10∧A ⊕ C01∧B ⊕ C11∧A∧B

Так как Fж(00) = 0, то С00 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10) = С00 ⊕ С10 = 0 => С10 = 0 ⊕ 0 = 0
Fж(01) = С00 ⊕ С01 = 1 => С01 = 0 ⊕ 1 = 1
Fж(11) = С00 ⊕ С10 ⊕ С01 ⊕ С11 = 1 => С11 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = B
Логическая схема, соответствующая полиному Жегалкина:

Наши друзья

Качественное решение задач курсовых работ, РГЗ по техническим предметам.
botaniks.ru

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2018, Список Литературы