Динамические системы

Список источников >Физика >Динамические системы >

The principle of least action in geometry and dynamics

Автор: Siburg K.F.
Год: 2004
Издание:

Страниц: [не указано]
ISBN: [не указан]
New variational methods by Aubry, Mather, and Mane, discovered in the last twenty years, gave deep insight into the dynamics of convex Lagrangian systems. This book shows how this Principle of Least Action appears in a variety of settings (billiards, length spectrum, Hofer geometry, modern symplectic geometry). Thus, topics from modern dynamical systems and modern symplectic geometry are linked in a new and sometimes surprising way. The central object is Mather?s minimal action functional. The level is for graduate students onwards, but also for researchers in any of the subjects touched in the book.
Добавлено: 2009-08-09 01:26:38

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2017, Список Литературы