Продвинутый анализ

Список источников >Математика >Анализ >Продвинутый анализ >

Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach

Автор: Deift P.
Год: 2000
Издание:

Страниц: [не указано]
ISBN: [не указан]
This volume expands on a set of lectures held at the Courant Institute on Riemann-Hilbert problems, orthogonal polynomials, and random matrix theory. The goal of the course was to prove universality for a variety of statistical quantities arising in the theory of random matrix models. The central question was the following: Why do very general ensembles of random $n { imes} n$ matrices exhibit universal behavior as $n { ightarrow} {infty}$? The main ingredient in the proof is the steepest descent method for oscillatory Riemann-Hilbert problems.
Добавлено: 2009-08-09 01:26:36

Видео о книгах:

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2016, Список Литературы