Алгебраическая геометрия

Список источников >Математика >Алгебра >Алгебраическая геометрия >

Mixed motives

Автор: Levine M.
Год: 1998

Страниц: [не указано]
ISBN: [не указан]
The author constructs and describes a triangulated category of mixed motives over an arbitrary base scheme. The resulting cohomology theory satisfies the Bloch-Ogus axioms; if the base scheme is a smooth scheme of dimension at most one over a field, this cohomology theory agrees with Bloch's higher Chow groups. Most of the classical constructions of cohomology can be made in the motivic setting, including Chern classes from higher X-theory, push-forward for proper maps, Riemann-Roch, duality, as well as an associated motivic homology, Borel-Moore homology and cohomology with compact supports. The motivic category admits a realization functor for each Bloch-Ogus cohomology theory which satisfies certain axioms; as examples the author constructs Betti, etale, and Hodge realizations over smooth base schemes. This book is a combination of foundational constructions in the theory of motives, together with results relating motivic cohomology with more explicit constructions, such as Bloch's higher Chow groups. It is aimed at research mathematicians interested in algebraic cycles, motives and X-theory, starting at the graduate level. It presupposes a basic background in algebraic geometry and commutative algebra.
Добавлено: 2009-08-09 01:26:36

Видео о книгах:

Это интересно...

Наши контакты


© 2009-2016, Список Литературы