Академическая литература издательств Америки

Список источников >Нехудожественная литература >Научная и техническая литература >Академическая литература зарубежных издательств >Издательство Wiley >Академическая литература издательств Америки >

Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning (Springer Texts in Statistics)

Автор: Alan Julian Izenman
Год: 2008
Издание: [не указанo]
Страниц: 734
ISBN: 0387781889
Remarkable advances in computation and data storage and the ready availability of huge data sets have been the keys to the growth of the new disciplines of data mining and machine learning, while the enormous success of the Human Genome Project has openedup the field of bioinformatics. These exciting developments, which led to the introduction of many innovative statistical tools for high-dimensional data analysis, are described here in detail. The author takes a broad perspective; for the first time ina book on multivariate analysis, nonlinear methods are discussed in detail as well as linear methods. Techniques covered range from traditional multivariate methods, such as multiple regression, principal components, canonical variates, linear discriminan analysis, factor analysis, clustering, multidimensional scaling, and correspondence analysis, to the newer methods of density estimation, projection pursuit, neural networks, multivariate reduced-rank regression, nonlinear manifold...
Добавлено: 2013-10-22 16:03:03

Видео о книгах:

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2016, Список Литературы